
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Dexalot
Date: 15 September, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Dexalot

Approved By Paul Fomichov | Lead Solidity SC Auditor at Hacken OÜ
Grzegorz Trawiński | Lead Solidity SC Auditor at Hacken OÜ

Tags DEX, Signatures;

Platform Avalanche

Language Solidity

Methodology Link

Website https://dexalot.com/

Changelog

25.04.2023 – Initial Review
16.05.2023 - Second Review
22.05.2023 - Third Review
05.09.2023 - Fourth Review
15.09.2023 - Fifth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://dexalot.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10

H01. Upgradeability Issues 10
H02. Unsafe Approval 10

Medium 11
M01. EIP Standard Violation : Missing Value Check 11

Low 11
L01. Missing Zero Address Validation 11
L02. Missing Array Length Check 12

Informational 12
I01. Inefficient Gas Model - Loop of Storage Interactions 12
I02. Functions that Can Be Declared External 12
I03. Boolean Equality 13
I04. Duplicate Code 13
I05. Solidity Style Guides Violation 13

Disclaimers 15
Appendix 1. Severity Definitions 16

Risk Levels 16
Impact Levels 17
Likelihood Levels 17
Informational 17

Appendix 2. Scope 18

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Dexalot (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The scope of this audit consists of an upgradeable contract that handles
swapping of any two assets based on a signed quote that is generated
through an off-chain REST API. The swapping details, such as the amounts
and receivers, are determined by the quote generated by the REST API.
The latest version of the system implements functionality to allow
signature verifications from non-EOA smart contracts.

The files in the scope:
● MainnetRFQ.sol - The contract that handles the signature verified

swapping.

Privileged roles
● swapSigner: creates signature.
● rebalancer: rebalances inventory of the smart contract, updates quote

expiry and quote maker amount.
● default admin: manages swapSigner and rebalancer addresses. Sets

trusted contracts, changes the admin, and can pause/unpause the
contract, set slippage tolerance.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are present.
● Technical specifications, including NatSpec are provided and very

detailed.
● Description of the development environment is sufficient.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● Best practices violation: I05

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases are covered.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8. The system users should acknowledge all the risks
summed up in the risks section of the report.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Table. The distribution of issues during the audit

Review date Low Medium High Critical

25 April 2023 5 0 1 0

16 May 2023 1 0 0 0

22 May 2023 0 0 0 0

05 September 2023 1 1 1 0

15 September 2023 0 0 0 0

Risks

● The off-chain REST API used to get a signed quote that also
determines the swap rate of the assets is out of this audit scope and
its security can not be guaranteed.

● Block.timestamp values are used for swaps; hence, it creates a risk
of manipulation.

● Missing _disableInitilizers() call in the constructor creates a risk
of the implementation contract being directly initialized.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Not

Relevant

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Not

Relevant

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Passed

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I05

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

H01. Upgradeability Issues

Impact Medium

Likelihood High

The contract is upgradable but does not follow the upgradability best
practices by not adding a gap in the contract storage.

This may lead to contract storage layout corruption during an
upgrade.

The contract inherits EIP712Upgradeable that contains a __gap
variable, but it is a best practice to create a new __gap variable
that will be more accessible due to variables order.

Path: ./contracts/MainnetRFQ.sol

Recommendation: Add a gap to the contract storage to allow future
upgradability.

Found in: f8881f9

Status: Fixed

(Revised commit: 4d650f9) (__gap variable is added.)

H02. Unsafe Approval

Impact High

Likelihood High

The contract MainnetRFQ uses the approve() function inside of the
_executeSwap(), which does not update the allowance, but replaces it.

This creates a problem in a situation, when a taker, which is a
smart-contract, makes several swaps, and does not withdraw the
previous approval.

Path: ./contracts/MainnetRFQ.sol : _executeSwap()

Proof of Concept: Dexalot PoC

www.hacken.io
10

https://docs.google.com/document/d/18jqdCyVP44lwgttiXkft4HIx7QbZGFqg8BmOKra953Y/edit?usp=sharing
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps


Recommendation: Transfer tokens to the contract in a direct way or
use safeIncreaseAllowance() method from SafeERC20Upgradeable library.

Found in: bc4b5dd

Status: Fixed (Revised commit: f13e089)

Medium

M01. EIP Standard Violation : Missing Value Check

Impact High

Likelihood Low

According to the EIP-1271 implementation, the s value in the
signature verification process should be checked against an upper
value. The function _recoverSigner() does not implement an upper
bound check for the variable s.

Path: ./contracts/MainnetRFQ.sol : _recoverSigner()

Recommendation: Follow the EIP-1271 standard and implement a check
for the value s.

Found in: bc4b5dd

Status: Fixed (Revised commit: f13e089)

Low

L01. Missing Zero Address Validation

Impact Low

Likelihood Medium

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/MainnetRFQ.sol : initialize(), addAdmin(),
addTrustedContract()

Recommendation: Implement zero address checks.

Found in: f8881f9

Status: Fixed

(Revised commit: 4d650f9) (Zero address checks are added)

www.hacken.io
11

https://eips.ethereum.org/EIPS/eip-1271#reference-implementation
https://eips.ethereum.org/EIPS/eip-1271#reference-implementation


L02. Missing Array Length Check

Impact Low

Likelihood Medium

The function batchClaimBalance() lacks the array length equality
checks, which will lead to unexpected behavior if the length of
arrays is different.

Path: ./contracts/MainnetRFQ.sol: batchClaimBalance()

Recommendation: Implement the _assets.length == _amounts.length
check.

Found in: bc4b5dd

Status: Fixed (Revised commit: f13e089)

Informational

I01. Inefficient Gas Model - Loop of Storage Interactions

In the batchClaimBalance() function, the variable rebalancer is read
from storage in every loop iteration.

Accessing storage variables multiple times is not very Gas efficient.

Path: ./contracts/MainnetRFQ.sol : batchClaimBalance()

Recommendation: Read rebalancer variable to memory and use the memory
variable inside the while loop.

Found in: f8881f9

Status: Fixed

(Revised commit: 4d650f9) (rebalancer variable is now msg.sender and
there is an access control modifier)

I02. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Path: ./contracts/MainnetRFQ.sol : intialize()

Recommendation: Use the external attribute for functions never called
from the contract.

Found in: f8881f9

Status: Fixed

(Revised commit: 4d650f9) (initializer is declared external)

www.hacken.io
12



I03. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/MainnetRFQ.sol : simpleSwap(), claimBalance(),
batchClaimBalance()

Recommendation: Remove boolean equality.

Found in: f8881f9

Status: Fixed (Revised commit: e2cfd50)

I04. Duplicate Code

The check if the caller is the rebalancer is repeated several times
instead of being used in a modifier.

require(msg.sender == rebalancer, "RF-OCR-01");

Repeating require statements throughout the contract code can lead to
unnecessary code duplication. This can make the codebase harder to
maintain and more prone to errors.

Path: ./contracts/MainnetRFQ.sol : claimBalance(),
batchClaimBalance(), receive()

Recommendation: Use a modifier instead of repeating require
statements. It will make code more maintainable, consistent and
readable, while potentially improving Gas efficiency.

Found in: f8881f9

Status: Fixed (Revised commit: 4d650f9) (access control is used and
rebalancer is now the REBALANCER_ADMIN_ROLE role)

I05. Solidity Style Guides Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

www.hacken.io
13



Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Path: ./contracts/MainnetRFQ.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and
following Solidity's naming conventions further enrich the quality of
the code.

Found in: bc4b5dd

Status: Reported (The style guides for function order are violated
for private functions. The functions are not properly grouped within
themselves as view, pure.)

www.hacken.io
14



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
15



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
16



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
17



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/Dexalot/contracts

Commit f8881f901e3680cdf281de7ef8e2812e4a89ec8d

Whitepaper Link

Functional
Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 334e4563a80a14c1707118924c89971eb32b9d407d94be8778597b06202d4ad8

Second review scope

Repository https://github.com/Dexalot/contracts

Commit 4d650f9152b5c90a63a25f13c2a0176c2632526d

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 36be1f2e5698e8e9b9e9c0aa7efc002d60f48d2d5eaaf83c179356b307e3c12b

Third review scope

Repository https://github.com/Dexalot/contracts

Commit e2cfd502dd25949661675f5f905f8506ae112477

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 94c7dc33ae76ba2502a07fd48760687ff4b1aa11799aad1186c2d9b7011b0a1b

www.hacken.io
18

https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://github.com/Dexalot/contracts/blob/main/README.md
https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated


Fourth review scope

Repository https://github.com/Dexalot/contracts

Commit bc4b5dd230259edd0aeb521fda3053493b4701c4

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: 90d22fd135ecc59a890d0faee878d516cd68dfd2dfb595f963efc953c509390a

Fifth review scope

Repository https://github.com/Dexalot/contracts

Commit f13e0898f3e9005bcae01f39fbc1f222528e8382

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/MainnetRFQ.sol
SHA3: f369b89f93b631d886f03cb6e4aac2ad24632ffcba6a4117c04a9bb10c55d915

www.hacken.io
19

https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://docs.dexalot-dev.com/contracts/MainnetRFQ.html#rebalancerupdated
https://github.com/Dexalot/contracts
https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://docs.dexalot.com/contracts/MainnetRFQ.html
https://docs.dexalot.com/contracts/MainnetRFQ.html

