
Customer: Kitsumon
Date: April 6th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Kitsumon.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC721 token;Transfer controller
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/Kitsumon/contracts/commit/31e7e70de90bf22fe0

33b02347c573484f202e69 – INITIAL AUDIT
https://github.com/Kitsumon/contracts/tree/v2 - Connect to
preview – REMEDIATION CHECK
HTTPS://GITHUB.COM/KITSUMON/CONTRACTS/TREE/V2 – REMEDIATION CHECK 2

Commit 31e7e70de90bf22fe033b02347c573484f202e69 – INITIAL AUDIT
7F172B99ABA09282031C94437D82B970B3B84340 - REMEDIATION CHECK 2

Technical
Documentation

Yes

JS tests Yes
Website https://kitsumon.com
Timeline 16 FEBRUARY 2022 – 06 APRIL 2022
Changelog 26 FEBRUARY 2022 – INITIAL AUDIT

14 MARCH 2022 – REMEDIATION CHECK
06 APRIL 2022 – REMEDIATION CHECK 2

www.hacken.io

https://github.com/Kitsumon/contracts/commit/31e7e70de90bf22fe033b02347c573484f202e69
https://github.com/Kitsumon/contracts/commit/31e7e70de90bf22fe033b02347c573484f202e69
https://github.com/Kitsumon/contracts/tree/v2
https://github.com/Kitsumon/contracts/tree/v2
https://github.com/Kitsumon/contracts/tree/v2
https://kitsumon.com

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Disclaimers 14

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Kitsumon (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and
its code review conducted between February 16th, 2022 - February 26th, 2022.

The second review was conducted on March 14th, 2022.

The remediation review was conducted on April 6th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:
https://github.com/Kitsumon/contracts/commit/31e7e70de90bf22fe033b02347c573
484f202e69 - Initial Check
https://github.com/Kitsumon/contracts/tree/v2 - Remediation Check 2
Commit:
31e7e70de90bf22fe033b02347c573484f202e69 - Initial Audit
7f172b99aba09282031c94437d82b970b3b84340 - Remediation Check 2
Technical Documentation: yes
JS tests: Yes
Contracts:

TokenStaking.sol
PaymentAcceptor.sol
PaymentAcceptorFcfs.sol
KMCTGEVestingV1.sol
WalletUpgradeable.sol
TokenVestingUpgradeable.sol
AuctionHouse.sol
Market.sol
WhitelistUpgradeable.sol
WhitelistUpgradeableBase.sol
WhitelistCountertUpgradeable.sol
AuctionHouse.sol
Market.sol
MinterPresetUpgradeable.sol
SecurityPresetUpgradeable.sol
KMCV1.sol
ERC20CappedPresetUpgradeable.sol
Erc20PresetUpgradeable.sol
ERC721CappedPresetUpgradeable.sol
Erc721PresetUpgradeable.sol
EggRedemptionCardV1.sol
Potions.sol
RandomEggMinter.sol
ERC721KitsuMarkeplace.sol
ERC721CappedUpgradeable.sol
WhitelistUpgradeable.sol
WhitelistUpgradeableBase.sol
WhitelistCountertUpgradeable.sol

www.hacken.io

https://github.com/Kitsumon/contracts/commit/31e7e70de90bf22fe033b02347c573484f202e69
https://github.com/Kitsumon/contracts/commit/31e7e70de90bf22fe033b02347c573484f202e69
https://github.com/Kitsumon/contracts/tree/v2

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.

Our team analyzed code functionality, manual audit, and automated checks
with Mythx and Slither. All issues found during automated analysis were
manually reviewed, and important vulnerabilities are presented in the Audit
overview section. All found issues can be found in the Audit overview
section.

As a result of the audit, security engineers found 4 critical, 1 high, 4
medium, 12 low severity issues.

www.hacken.io

As a result of the remediations review, Customers’ smart contracts contain
2 critical, 1 high, 3 medium, and 12 low severity issues.

As a result of the remediations review, Customers’ smart contracts contain
no issues.

Notice: Tokenstaking.sol hints nothing whether it holds reward and stake
balance together or separately. Check this logic and make sure they are
separated

Notice: RandomEggMinter.sol uses chainlink VRF to generate random numbers.
Its requestRandomness method may take fees. See the following issue:
https://github.com/smartcontractkit/chainlink/pull/5943

www.hacken.io

https://github.com/smartcontractkit/chainlink/pull/5943

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to asset loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to asset loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Audit overview

Critical

1. Wrong Control Mechanism

In the KMCv1.sol contract’s setTradingStart() function, the required
statement that checks the start time of trading can never be greater
than the current time.

Contracts:KMCv1.sol

Function: setTradingStart() lines #52-57

Recommendation: Convert this statement to check _time or set an
initial value to _tradingStartTime and make condition >= 0

Status: Fixed

2. Gas Limit not Set

The Gas limit is not set when transferring Ether. If the underlying
contract has a receive or fallback function that infinitely consumes
gas (e.g. infinite loop) a bid could not be beaten, and execution of
any function that calls the `_handleOutgoingBid` function will fail
and consume enormous amounts of gas.

Contracts: AuctionHouse.sol

Function: _handleOutgoingBid()

Recommendation: send only wrapped Ethereum or transfer eth via send
function and validate its results.

Status: Fixed

High

Potential Lock of Funds

In the _handeOutgoingBid() function, the failure condition of the
Ether transfer is checked with an if statement. This can lead to the
locking of funds. If the receiving contract is not able to handle
incoming Ether

Contracts:AuctionHouse.sol

Function: _handleOutgoingBid() line #393

Recommendation: Change this control mechanism with a require
statement.

Status: Fixed

www.hacken.io

Medium

1. Mismatching Calculations

In the finalizeNFTTransfer() function, the formula for the bid share
of the new owner is supposed to be 100 - creatordShare - sellOnShare,
but in the below line, it only deducts creator share from 100.

Contracts: Market.sol

Function: _finalizeNFTTransfer()

Recommendation: Review this logic.

Status: Mitigated

2. Redundant Function Call

In WhitelistCounterUpgradeable.sol contract, the function
isWhitelistedAmt executes only if it is not paused, but there is a
condition for if it is paused.

Contracts:WhitelistCounterUpgradeable.sol

Functions: isWhitelistedAmt()

Recommendation: Remove the redundant.

Status: Fixed

3. Unused Return

In the ERC721KitsuMarketplace.sol contract, the removeBid function
ignores the IMarket.removeBid()’s return value.

Contracts:ERC721KitsuMarketplace.sol

Function: removeBid()

Recommendation: Implement Control Mechanisms.

Status: Fixed

www.hacken.io

Low

1. Missing Checks.

In KMCv1.sol contract, unthrottleAccount function needs to check if
the account is already unthrottled. Again in KMCv1.sol, the
whitelistAccount() function needs to check if the account is already
whitelisted.

Contracts:KMCv1.sol

Function: whitelistAccount(), unthrottleAccount()

Recommendation: Implement necessary control mechanisms.

Status: Fixed

2. Missing Whitelist Control

In WhitelistCounterUpgradeable.sol contract, the function
isWhitelistedAmt() needs to check if the address is whitelisted first
before whitelisting the amount.

Contracts:WhitelistCounterUpgradeable.sol

Functions: isWhitelistedAmt()

Recommendation: Implement necessary control mechanisms.

Status: Fixed

3. Function Calling Assumption.

In TokenStakingV1.sol contract, function
__TokenStakingV1_init_unchained() function is created with the sole
purpose of being called in __TokenStakingV1_init_(). However, its
visibility is public so that it can be called by everybody anytime.

In PaymentAcceptor.sol contract, function
__PaymentAcceptor_init_unchained() function is created with the sole
purpose of being called in __PaymentAcceptor_init_(). However, its
visibility is public so that it can be called by everybody anytime.

Contracts:TokenStakingV1.sol, PaymentAcceptor.sol

Function:

__PaymentAcceptor_init_unchained(), __TokenStakingV1_init_unchained()

Recommendation: Change function visibility.

Status: Fixed

www.hacken.io

4. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Contracts:AuctionHouse.sol, SecurityPresetUpgradeable.sol

Function: endAuction(), whenEnabled()

Recommendation: Remove boolean equality.

Status: Fixed

5. Missing Zero Address Validation.

In the Potions.sol contract, the state variable blacklist needs to be
checked if it is 0x0.

Contracts: Potions.sol

Function: -

Recommendation: Implement zero address checks.

Status: Fixed

6. Redundant Calculation

In the endAuction() function, instead of calculating the end time
over and over again. Call the getEndTime to save Gas

Contracts: AuctionHouse.sol

Functions: endAuction(uint256 auctionId)

Recommendation: Remove this statement.

Status: Fixed

7. Redundant Function

getCurrentTime() function only returns block.timestamp.

Contracts: TokenVestingUpgradeable.sol

Functions: getCurrentTime()

Recommendation: Remove this function.

Status: Fixed

www.hacken.io

8. Return Value Ignored

In PaymentAcceptor and PaymentAcceptorFcfcs contracts, the pay
function uses add() to add elements into a set. However, the return
value of this call is not checked.

Contracts: PaymentAcceptor.sol, PaymentAcceptorFcfcs.sol

Functions: pay()

Recommendation: Implement return value checks.

Status: Fixed

9. Smaller Variable Type is being Used

In TokenStakingV1.sol, the state variable apy is initialized as a
uint256, but in the initializer functions, uint8 is passed to it.

Contracts:TokenStakingV1.sol

Functions: -

Recommendation: Adjust variable type accordingly.

Status: Fixed

10. Use of Hardcoded Values

__AuctionHouse_init_unchained() function uses hardcoded values 15 and
60 in multiplication

During the computation for the _maxTrnsferAMount variable, in
KMCv1.sol, hardcoded values are being used .

Contracts: AuctionHouse.sol, KMCv1.sol

Functions: __AuctionHouse_init_unchained()

Recommendation: Move hardcoded values to constants.

Status: Fixed

www.hacken.io

11. Floating Pragma

Market.sol and AuctionHouse.sol contracts use floating pragma ^0.8.6.

Contracts: Market.sol and AuctionHouse.sol

Functions: -

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed

12. Functions that can be Declared as external

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Contracts:TokenStakingV1.sol,TokenVestingUpgradeable.sol,
WalletUpgradeable.sol, PaymentAcceptor.sol, PaymentAcceptorFcfcs.sol,
KMCTGEVestingV1.sol,Market.sol,AuctionHouse.sol,SecurityPresetUpgrade
able.sol,MinterPresetUpgradeable.sol,KMCV1.sol,ERC20CappedPresetUpgra
deable.sol,Erc20PresetUpgradeable.sol,ERC721CappedPresetUpgradeable.s
ol,Erc721PresetUpgradeable.sol,EggRedemptionCardV1.sol,ERC721KitsuMar
keplace.sol,ERC721CappedUpgradeable.sol

Functions:__TokenVestingUpgradeable_init(),__WalletUpgradeable_init()
,__PaymentAcceptor_init(),__PaymentAcceptorFcfs_init(),__KMCTGEVestin
gV1_init(), __TokenStakingV1_init(),stake(),redeem(),setMaxAmount(),
setMinAmount(),fund(),getStakeCount(),getStake(),getTotal(),getTotalR
ewardFund(),emergencyTokenDrain(),emergencyNftDrain(),emergencyDrain(
),_AuctionHouse_init(address,address,address,address,uint256,uint8,ad
dress,__Market_init(address,address),__SecurityPresetUpgradeable_init
(),__MinterPresetUpgradeable_init(),__KMCV1_init(),__ERC20CappedPrese
tUpgradeable_init(),__Erc20PresetUpgradeable_init(),__ERC721CappedPre
setUpgradeable_init(),__Erc721PresetUpgradeable_init(),__EggRedemptio
nCardV1_init(),__ERC721KitsuMarkeplace_init(),
__ERC721CappedUpgradeable_init()

Recommendation: Change function visibility.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

