

Customer: XTblock
Date: October 8th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
XTblock.

Approved by Andrew Matiukhin | CTO Hacken OU
Type MasterChef
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/xtblock/binosaur/blob/main/contracts/MasterC

hef.sol.
Commit 427e02b518bac3968c917a733bd5ed3b98679ca1
Technical
Documentation

NO

JS tests NO
Timeline 24 SEPTEMBER 2021 – 08 OCTOBER 2021
Changelog 28 SEPTEMBER 2021 – INITIAL AUDIT

06 OCTOBER 2021 – SECOND REVIEW
08 OCTOBER 2021 – THIRD REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 11

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by XTblock (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between September 24th, 2021 - September 27th, 2021.

Second code review conducted on October 6th, 2021.

Third code review conducted on October 8th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:
 https://github.com/xtblock/binosaur/blob/main/contracts/MasterChef.sol
Commit:
 427e02b518bac3968c917a733bd5ed3b98679ca1
Technical Documentation: No
JS tests: No
Contracts:

access\Ownable.sol
GSN\Context.sol
math\SafeMath.sol
token\BEP20\BEP20.sol
token\BEP20\IBEP20.sol
token\BEP20\SafeBEP20.sol
utils\Address.sol
utils\Context.sol
MasterChef.sol

	

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured but
should be careful with the waitingPoolInfo and poolAllocPointInfo waiting-
list array sizes. 	

 You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Our team performed an analysis of code functionality,
manual audit, and automated checks with Mythril and Slither.
All issues found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview section. All
found issues can be found in the Audit overview section.

As a result of the audit, security engineers found 1 high, 1 medium and 3
low severity issues.

After the second review security engineers found that all main issues were
fixed but was added 1 medium severity issue.

After the third review security engineers found that all issues were
resolved.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

Possible rewards lost or receive more

Changing allocPoint in the MasterChef.set method while _withUpdate flag
set to false may lead to rewards lost or receiving rewards more than
deserved.

Recommendation: Please call updatePool(_pid) in the case if _withUpdate
flag is false and you don’t want to update all pools.

Fixed before the second review

 Medium

1. Privileged ownership

The owner of the MasterChef contract has permission to
updateMultiplier, add new pools, change pool’s allocation points and
set migrator contract (which will move all LPs from the pool to itself)
without community consensus.

Recommendation: Please consider using one of the following
methodologies:

- Transfer ownership to Time-lock contract with reasonable latency
(ie. 24h) so the community may react on changes;

- Transfer ownership to multi-signature wallet, to prevent single
point of failure;

- Transfer ownership to DAO so the community could deside whether
the privileged operations should be executed by voting.

Status: Created a time-locking feature, so the community now have a
minimum of 24h to react to changes.

2. Possibility to get an unreachable contract

State variables “waitingPoolInfo” and “poolAllocPointInfo” are arrays
and not restricted in the length. There is a possiblity when the
corresponding “executeAddPools” and “executeUpdateAllocPoint”
functions wouldn’t be called externally for any reason and those arrays
could be filled with a lot of records which will make it impossible to
execute corresponding functions because of amount of gas needed will
be more than could be taken in the block

Recommendation: Please make sure to limit the above arrays. That may
be done by checking the array length before pushing a new element and
executing some part of the work to decrease its size.

Fixed before the third review

www.hacken.io

 Low

1. Unnecessary operations

When allocPoint is not changed for the pool, there is still an
assignment for a new value, which just consumes gas doing nothing.

Recommendation: Please move “poolInfo[_pid].allocPoint = _allocPoint”
assignment inside the if block.

Fixed before the second review

2. Missing Emit Events

Functions that change critical values should emit events for better
off-chain tracking.

Recommendation: Consider adding events when changing critical values,
and emit them in the function.

Fixed before the second review

3. A public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Recommendation: Use the external attribute for functions never called
from the contract.

Fixed before the second review

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 high, 1 medium and 3
low severity issues.

After the second review security engineers found that all main issues were
fixed but was added 1 medium severity issue.

After the third review security engineers found that all issues were
resolved.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

